2023

CHEMISTRY — HONOURS

Paper: CC-10

(Inorganic Chemistry - 4)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions :

1×10

(a) Justify whether the following transitions are spin allowed or spin forbidden.

$$t_{2g}^{3} e_{g}^{2} \longrightarrow t_{2g}^{2} e_{g}^{3}$$

$$t_{2g}^{2} e_{g}^{0} \longrightarrow t_{2g}^{1} e_{g}^{1}$$

- (b) Between [Co(NH₃)₆]³⁺ and [Co(NH₃)₅ CI]²⁺, which one has intense colour?
- (c) Which lanthanide atom has ground state electronic configuration of [Xe]4f⁷5d¹6s²?
- (d) Which ion(s) among the following will have highest tendency towards formation of tetrahedral complex— Ni(II), Co(II), Cr(III)?
- (e) Arrange NO₂, H₂O, CO and Cl according to increasing trans effect shown by them.
- (f) Give example of a transition metal complex which shows evidence of Jahn Teller distortion in its visible spectrum.
- (g) Give example of a compound which shows superexchange phenomenon.
- (h) What type of charge transfer spectra is observed in Fe4 Fe11 (CN)6 ??
- (i) Cite an example of metal complex which shows spin state equilibrium.
- (j) Give one example of superconducting lanthanide compound with its molecular formula.
- (k) Give two uses of actinide compounds.
- (1) Which electronic configuration gives orbital contribution to the overall magnetic moment of the complex?

 d^3 , d^4 (l.s.), d^5 (h.s)

- (a) Stability of a distorted octahedral complex is greater than that of a perfectly octahedral complex. Explain with suitable example.
 - (b) Explain why energy of ligand to metal charge-transfer bands follows the trend $[CoI_4]^{2-} < [CoBr_4]^{2-} < [CoCI_4]^{2-}.$ 3+2
- Show splitting pattern of d-orbitals in square planar complex. Explain why the complex [PdCl₄]²-adopts the square planar geometry.
 - (b) Explain the fact: $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{3+}$ has greater CFSE than $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{2+}$ 3+2
- 4. (a) Metal ion having d^9 configuration preferably forms octahedral complexes whereas that with d^{10} configuration preferably forms tetrahedral complexes. Justify.
 - (b) Predict the spinel nature of CuFe₂O₄. 3+2
- 5. (xt) Explain why cis-platin on reacting with excess thio urea (tu) produces $[Pt(tu)_4]^{2+}$ while trans-platin produces trans- $[Pt(tu)_2(NH_3)_2]^{2+}$ complex.

3+2

3+2

- (b) Explain the term 'Nephelauxetic effect'
- -6. (a) $\left[V(H_2O)_6\right]^{3+}$ absorbs 17,200 cm⁻¹; 25,600 cm⁻¹ and 38,500 cm⁻¹ of light. Assign these absorptions with proper transitions involved with the help of Orgel diagram. Find out the 10 Dq value from the given data.
 - (b) What do you mean by labile complex? Give an example.
- 7. (a) Identify the products A, B, C, D, E, F.

$$[PtCl_4]^{2-} \xrightarrow{Py} D \xrightarrow{Br^-} E \xrightarrow{Py} C$$

(Py = Pyridine)

- (b) [VO₄]³⁻ is colourless while [CrO₄]²⁻ is yellow, although both the metal ions have d⁰ electronic configuration.
 3+2
- 8. (3) Discuss the differences in spectral properties of transition metal compounds with lanthanide compounds.
 - (b) In $[CrF_6]^{4-}$ four (Cr F) bonds are long and two are short but in $[MnF_6]^{4-}$ all (Mn F) bonds are equal in length. Why?

- (a) With the help of M.O. diagram, explain why halides show field strength order as $\Gamma < Br^- < Cl^- < F^-$.
 - (b) Explain why EDTA forms a more stable complex with Lu(III) than La(III).

3+2

- 10. (a) Discuss the mechanistic steps involved in the base catalysed hydrolysis of $\left[\text{CoCl(NH}_3)_5\right]^{2+}$ complex.
 - (b) Why tetrahedral complexes show much intense colour than octahedral complexes of same metal ion?

 3+2
- Compare the magnetic moment of tetrahedral and octahedral complexes of Ni(II) with respect to spin only magnetic moment value.
 - (b) Mention the lanthanide ions which are stable in +2 oxidation state.

3+2

- (a) State the Jahn Teller theorem. Mention the electronic configurations in tetrahedral complexes which show Jahn Teller distortion.
 - (b) Compare the stability of oxidation states of transition metal ions along a group.

3+2

- Show graphically how lattice energy of divalent halides, MX₂(M = Ca to Zn) vary and also provide a proper explanation.
 - (b) Calculate the OSSE value for Ni(II) ion.

3+2