2023

CHEMISTRY — **HONOURS**

Paper: CC-9

(Physical Chemistry - 3)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicalbe.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:

1×10

- (a) The function $f(x) = e^{-ikx}$ is an eigenfunction of an operator $\hat{A} = -i\hbar \frac{\partial}{\partial x}$. Find the eigenvalue of the eigenfunction.
- (b) Why for a two-component system, the degree of freedom (F) at the Eutectic point is zero?
- (c) A mixture of Na₂CO₃ and K₂CO₃ is used as fusion mixture. Explain.
- (d) Prove that if $\psi(x)$ is a solution to the Schrödinger equation, then any constant times $\psi(x)$ is also a solution.
- (e) Show the distance of separation of (nh, nk, nl) planes from d_{hkl} value with orthogonal axes.
- (f) "If the degree of dissociation or association of solute molecules in solvent increases, the extent of abnormality in colligative property increases." Explain.
- (g) For a particular wavelength of X-rays, show that the highest order of reflection made by the lattice planes is directly proportional to the interplaner distance.
- (h) What is the physical significance of $|\psi|^2$?
- (i) What is the significance of normalisation constant?
- (j) What do you mean by expansion of eigenstates?
- (k) Explain Bohr's correspondence principle for particle in an one-dimensional box.
- (l) Why are the number of chemical species and number of components are equal for non-interacting constituents in equilibrium?
- 2. Using the concept of chemical potential, derive the van't Hoff equation, $\pi = cRT$, where the terms have usual significance. Also derive a relationship between osmotic pressure and lowering of vapour pressure of an ideal solution.

3. (a) Let $\psi_1, \psi_2, ... \psi_n$ be a set of linearly independent eigenfunctions.

If $\phi = c_1 \psi_1 + c_2 \psi_2 + ... + c_n \psi_n = \sum_i c_i \psi_i$, find the coefficients c_i 's? Assume that ψ_i 's are orthonormal.

- (b) A dilute solution of H₂SO₄ in water. Find its degrees of freedom and components. 3+2
- **4.** (a) Show that the probability of finding a particle in a one-dimensional box of length a within the interval.

$$\left(0 \le x \le \frac{a}{4}\right)$$
 is $\frac{1}{4}$, when *n* is even, and is $\left(\frac{1}{4} - \frac{(-1)^{\frac{n-1}{2}}}{2\pi n}\right)$ when *n* is odd.

- (b) Calculate the ratio of mole fraction of O_2 and N_2 dissolved in water at 25°C, if Henry's law constant for $N_2 = 6.50 \times 10^7$ torr and for $O_2 = 3.30 \times 10^7$ torr.
- 5. (a) If ψ_1 and ψ_2 are non-degenerate eigenfunctions of a Hermitian operator, ($\hat{\alpha}$) and given :

$$\hat{\alpha} | \psi_1 \rangle = a_1 | \psi_1 \rangle$$

 $\hat{\alpha} | \psi_2 \rangle = a_2 | \psi_2 \rangle$

 a_1 and a_2 being the eigenvalues of ψ_1 and ψ_2 , respectively. show that $\langle \psi_1 | \psi_2 \rangle = 0$.

- (b) In a crystalline solid, anion C is arranged in cubic close packing. Cation A occupies 50% of the tetrahedral voids and cation B occupies 50% of octahedral voids. What is the formula of the solid?

 3+2
- **6.** (a) State with reasons the degree of freedom (F) inside the bound area, outside the bound area and at the C.S.T. for phenol-water system.
 - (b) Evaluate the commutators of the operators A and A^{\dagger} , where $A = x + i \frac{h}{2\pi} \frac{d}{dx}$.
- 7. Consider the phase diagram (drawn here) for lead-silver system :

5

- (a) Describe the TT' line.
- (b) What are the phases present at P?
- (c) Describe the changes which occur when the liquid mixture (melt) X (nearly 80% $\stackrel{.}{Ag}$) is cooled along the dashed line (XX').

(d) Describe the changes along the dashed line yy'

- 8. (a) Show that the error in the de Broglie wavelength (λ) is related to the error in velocity (ν) by the relation $d\lambda = -\frac{\lambda}{\nu} d\nu$.
 - (b) The eigenfunction for the particle in a one-dimensional box of length a be $\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$. Show that the said wavefunction is an eigenfunction of \hat{p}_x^2 but not of \hat{p}_x . (The notations have their usual significance).
- 9. (a) State and explain Konowaloff's rule.
 - (b) What is the cause of positive deviations from Raoult's law? What are its consequences? 3+2
- 10. (a) Show that $\psi(x) = A \cdot e^{\pm 2\pi i x/\lambda}$ represents a de Broglie wave. Use this relation to derive an expression for x component of the linear momentum operator \hat{P}_x .
 - (b) If there exists a set of functions which are eigenfunctions of two operators \hat{A} and \hat{B} , they must commute: that is, $\hat{A}\hat{B} = \hat{B}\hat{A}$.
- 11. (a) Consider a particle in a two-dimensional box. Determine $[\hat{x}, \hat{p}_y], [\hat{x}, \hat{p}_x]$. (notations have got their usual significance).
 - (b) Show that the length of the box is an integral multiple of $\frac{\lambda}{2}$, where λ is the wavelength associated with the particle wave.

- 12. (a) KCl crystalizes as FCC. At certain temperature the density of KCl is 2gm/cc and the edge length of the unit cell is 6.3 Å. Find the number of K⁺ and Cl⁻ ions per kg of KCl.
 - (b) 'Experiment shows that KCl has a simple cubic lattice structure. However we expect that KCl should have the same structure of NaCl, that is FCC, as both of them form a continuous series of solid solution, where Na⁺ replaces K⁺ in any proportions.'— Comment. 3+2
- 13. (a) 'The void space of FCC lattice is greater than the void space of BCC lattice.'— Justify or criticize.
 - (b) Debye's theory is better at predicting low temperature behaviour of heat capacity than that of Einstein's.— Why? $2\frac{1}{2}+2\frac{1}{2}$