2023

CHEMISTRY — HONOURS

Paper: CC-4

(Inorganic Chemistry - 2)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:

1×10

- (a) Arrange the following in order of increasing thermal stability : MgSO₄, CaSO₄, SrSO₄, BaSO₄.
- (b) Predict the increasing bond angle sequence of the following:

$$CH_4$$
, CH_3^- , CH_3^+ .

- (c) Categorize the compounds with respect to Schottky and Frenkel defects: AgBr, ZnS, NaCl, KCl.
- (d) Predict the structure of XeOF₄ indicating the hybridization of the central element.
- (e) Which of the following has greater melting point?

RbCl and AgCl.

- (f) Find the total number of lone pairs of electrons on the central atom of SF₄.
- (g) Predict the unstable nucleii and write the mode of decay— ${}^{18}_{9}$ F and ${}^{18}_{10}$ Ne.
- (h) Write the number of unpaired electrons in the HOMO of NO.
- (i) Find the O O bond order in O_2^{2-} .
- (j) Predict the order of solubility in water of the following:AgF, AgCl, AgBr and AgI.
- (k) Give an example of an isotope which is used in the treatment of human cancer.
- (l) Write an example of an odd electron molecule.

Please Turn Over

Z(2nd Sm.)-Chemistry-H/CC-4/CBCS

2. (a) Predict the shapes of the following species and mention the type of hybrid orbitals on the central atom:

 $[I_3]^+$, XeO₂F₂ and SOF₄.

- (b) How and under what condition can an insulator be converted to a semiconductor? 3+2
- 3. (a) Write the Kapustinskii equation and explain how it is helpful in finding the lattice energy of an ionic solid, where the crystal structure is not known.
 - (b) Find the minimum energy required to split an ${}^{16}_{8}$ O nucleus into ${}^{4}_{2}$ He and ${}^{12}_{6}$ C nucleus. The binding energies of ${}^{16}_{8}$ O, ${}^{12}_{6}$ C and ${}^{4}_{2}$ He are 127.6, 92.1 and 28.3 MeV, respectively.
- 4. (a) Construct the MO energy level diagram of CO₂ and find the C-O bond order in the molecule.
 - (b) The C-Cl distance in CH₃Cl and CF₃Cl are 1.78 Å and 1.75 Å, respectively. Explain.
- 5. (a) Compare the σ -donor and π -acceptor property of CN^- and NO^+ through MO approach.
 - (b) Which hydrogen bond would you expect to be stronger and why?

 S H ······ O and S ····· H O.
- 6. (a) Calculate the electron affinity of iodine from the following data:

Formation energy of $NaI(s) = -289 \text{ kJ mol}^{-1}$

Sublimation energy of Na(s) = 108.8 kJ mol⁻¹

Dissociation energy of $I_2(g) = 214.2 \text{ kJ mol}^{-1}$

Ionization energy of Na(g) = $497.3 \text{ kJ mol}^{-1}$

Lattice energy of NaI(s) = -694.7 kJ mol⁻¹

- (b) What do you mean by 'Fissile nucleus'? Name one of such nucleii with atomic and mass numbers.
- 7. (a) BF₃, PF₃ and ClF₃ are AX₃ type of molecule, but their structures and bond angles are different. Explain.
 - (b) From the radius ratio (r₊ / r₋) values, CdS (0.52) and HgS (0.55) are expected to adopt the NaCl structure but they actually crystallize in the ZnS structure. Explain.
- 8. (a) Explain the following:
 - (i) Li₃N can be formed while Na₃N is not.
 - (ii) The iodine atom in IF₅ sits slightly below the plane of the base of the square pyramid.
 - (b) N_3^- is more resonance stabilized than HN₃. Explain.

3+2

- 9. (a) Justify the following:
 - (i) Methanol, CH₃OH, has a much higher boiling point than methyl mercaptan, CH₃SH.
 - (ii) Solubility of ortho-nitrophenol and para-nitrophenol in water are different.
 - (b) The nucleus 23 Ne decays by β -emission. Write down the decay equation and determine the maximum kinetic energy of the electron emitted. (Ignore the mass of anti-neutrino)

Mass of
23
Ne = 22.994466 u
Mass of 23 Na = 22.989770 u

- 10. (a) ZnO and SnO₂ are white when cold but they look yellow when hot. Explain schematically the theory behind it.
 - (b) AlCl₃ is covalent, but it behaves like an ionic compound on hydration. Justify. 3+2
- 11. (a) Draw the Lewis structure of SO_2Cl_2 and find the formal charge on S and O.
 - (b) Predict and justify the order of dipole moment of CH₃Cl and CHCl₃. 3+2
- 12. (a) Explain the structure of PCl₃F₂ in the light of Bent's rule.
 - (b) PbCl₂ is white while PbI₂ is coloured. Justify. 3+2
- 13. (a) CH₃NCS is angular while SiH₃NCS is linear. Explain.
 - (b) What is radiocarbon dating? 3+2