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MATHEMATICS — MINOR
Paper : MN-2
(Basic Algebra)
Full Marks : 75

Candidates are required to give their answers in their own words
as far as practicable.
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[ English Version ]
The figures in the margin indicate full marks.

Throughout the question paper R denotes the set of real numbers.
Other symbols have their usual meanings.
Group - A
(Marks : 25)
1. Answer any two questions : 2%ax2

(a) Find the cube roots of —1.

(b) Apply Descartes’ rule of signs to find the nature of the roots of the equation x8 — 1 = 0.

(c) Show that (n + 1)" > 2".n!, where 7 is any positive integer.

(d) If the roots of the equation x3 + px? + gx + r = 0 are in A.P., then show that p? > 3g.

2. Answer any four questions : 5x4

where g, b are real numbers not both zero.

a— ib} _ 2ab
a

(a) Prove that sin {i log 5 =,
+ b~

a+ib

(b) Solve the equation x3 - 18x — 35 = 0, by Cardan’s method.

(c) Solve the equation 2x3 — x2 — 18x + 9 = 0 if two of the roots are equal in magnitude but opposite
in sign.



(d)

(e)
(H
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Using Cauchy-Schwartz inequality, prove that

1 1 1 i
(a+/_7+c+c/)(—+—+—+—\§> 16,
\a b ¢ d)

where a. b. ¢. d are all positive real numbers (not all equal).
Solve the equation cos z = 2, where the solutions should be written in general form.

a. b. ¢ be positive real numbers, prove that

a b ¢
-+ >

.
S

+ —, unless a = b = ¢.
b+c¢c c+a a+b 2

Find the sum of 99th powers of the roots of the equation x’ — 1 = 0.

Group - B
(Marks : 25)

3. Answer any two questions : 2Y5x2

(@)

(b)
(©)
(d)

Suppose f: R — R be defined by f(x) = v2 — 5x + 6. Prove that fis neither an injective mapping
nor a surjective mapping.

Find two integers v and v such that 54u + 24v = 30.
Find out the unit digit of 32°%%,

Examine whether the relation R, defined on the set Z by a R b if and only if
a—b<35,a b e Z is an equivalence relation or not.

4. Answer any four questions :

(a)

(b)
(©

(@

(e)

(H

Find gcd of 315 and 4235 and find integers s and ¢ such that ged (315, 4235) = 315s + 4235+

5
Find the remainder when |1 +|2 + {3+ ........ + {100 is divided by 40. 5
Find fo g and g o f, where f: R — R is defined by f(x) = |x| +x,x e Rand g: R - R is
defined by g(x) = |x| —x, x € R. 5
Solve the system of linear congruences by Chinese remainder theorem
x = 2 (mod 3)
x = 3 (mod 5)
x =4 (mod 7) 5

(i) Find the value of ¢$(2024).
(i) n* +n+4lisa prime number, for all » € N. Is it true? Justify your answer. 3+2
If 4 = {2, 3, 4}, then find the number of relations on 4 which are both reflexive and symmetric.

5
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1
(g) Let A=R\ {——5} B =R\ {%} where R denotes the set of all real. Let f: 4 — B be defined by

. x-3
f(x)= il for all x € A. Does /! exist? Justify your answer. 1+4
Group - C
(Marks : 25)
5. Answer any twe questions : 2%5x2

(a) Verify whether the set of vectors {(1, 5, 2), (1, 1, 0), (0, 0, 1)} is linearly independent or not in R3.
(b) Find a spanning set of the subset S of R3, where S = {(x,y,2) € R3 : 2x + y — z = 0}.
(c) If A is invertible and 4B = 0, then prove that B = 0, where 4, B both nxn (square) matrices.

(d) Find the value of A so that the matrix 4 = G i) is its own inverse.

6. Answer any four questions : 5x4

(a) Find the rank of the matrix by reducing it to row reduced Echelon form

01 -3 -1
I 0 1 1
31 0 2
11 2 0

(b) Determine the conditions for which the system x + y +z=1,x + 2y —z=05, 5x + Ty + az = b2
admits of (i) only one solution, (ii) no solution, (iii) many solutions.

(c) Prove that (4 + B)A_l A4-B)=4 - B)A_1 (4 + B) if A and B are square matrices and A4 is
invertible.

(d) If {o, B, y} is linearly independent set of vectors in space R”, then prove that {a + B + v,
B + v, v} is also a linearly independent set in R”.
(e) Find the dimension and basis of the solution space of the system of equations :

x—-2y+z=90

[N]

x—-2y-z=0

(f) Transfer the system of equation 2x — 3y + 42 = 3, 3x + 2y ~z =4, 5x + 3y — z = 7 to a matrix
equation AX = B. Hence, solve the system by using the properties of matrix.

(g) Find a linearly independent subset T of the set S = {a,, o, a3, o4}, where o; = (1, 2, 1),
Oy = (-3, -6,3), 03=(2,1,3),a,=(8,7,7) € R3 which spans the same space as S.



