2025

MATHEMATICS — HONOURS

Paper: DSCC-5

(Theory of Real Functions)

Full Marks: 75

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

N, Q, R denote the sets of natural numbers, rational numbers and real numbers respectively.

Group - A

[Limit and Continuity of Functions]

(Marks: 45)

1. Answer any five questions :

(a) Evaluate:
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x^2}\right)$$
.

(b) Prove that
$$\lim_{x \to 0} \sin \frac{1}{x}$$
 does not exist.

(c) Apply Sandwich theorem and evaluate
$$\lim_{x\to 0+} \frac{\sin x}{x}$$
.

(d) A function
$$f$$
 continuous on a bounded interval I may not be bounded on I . Justify it.

(e) Find the value of 'a' for which the function
$$f(x) = \begin{cases} x^2 - 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$$
 is continuous at the point '3'.

(f)
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = \begin{cases} |\sin \frac{1}{x}|, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Find the oscillation of f at $x = 0$.

Find the point of discontinuity of the function f(x) = x - [x]; $0 \le x \le 2$. Also mention the type of discontinuity of the function.

(g) Prove that the function
$$f(x) = \frac{1}{x^2}$$
; $x \in (0,1]$ is not uniformly continuous on $(0,1]$.

(h) Let
$$f: [0, 1] \to \mathbb{N}$$
 be a continuous function. Show that f is constant function.

Please Turn Over

(3106)

3

- 2. Answer any six questions:
 - (a) Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. Let c be a limit point of D and $l \in \mathbb{R}$. Prove that $\lim_{x \to c} f(x) = l$ iff for every sequence $\{x_n\}$ in $D \setminus \{c\}$ converging to c the sequence $\{f(x_n)\}$ converges to l.
 - (b) State Cauchy's principle for existence of limit of a function at a point.

Let a function $f:(0,1) \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}$$

Using Cauchy's principle prove that $\lim_{x\to a} f(x)$ does not exist, where $0 \le a \le 1$. 2+3

- (c) (i) Let $f, g : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to c} f(x) = A > 0$ and $\lim_{x \to c} g(x) = \infty$ for some $c \in \mathbb{R}$. Prove that $\lim_{x \to c} [f(x)g(x)] = \infty$.
 - (ii) Show that $\lim_{x \to \infty} \frac{x [x]}{x} = 0$. 3+2
- (d) (i) If f: [a, b] → [c, d] is continuous at 'a' and g: [c, d], → R is continuous at f(a), then prove that g ∘ f: [a, b] → R is continuous at 'a'.
 - (ii) Show that $\frac{1+e^x \sin(x^3)}{101+\cos^2(x^2)e^{5x}}$ is continuous at every $x \in \mathbb{R}$. 3+2
- (e) Let $f: [a, b] \to \mathbb{R}$ be continuous on [a, b]. If f(a) < k < f(b), then prove that there exists a point c in (a, b) such that f(c) = k.

Or

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Prove that the set $\{x \in \mathbb{R}^*: f(x) \neq 0\}$ is an open set in \mathbb{R} .

- (f) If f: [a, b] → R be strictly monotonic increasing and continuous on [a, b], then prove that f admits a continuous inverse function.
- (g) Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ be uniformly continuous on D. If $\{x_n\}$ be a Cauchy sequence in D, then prove that $\{f(x_n)\}$ is also a Cauchy sequence in \mathbb{R} . Is it true when the function f is continuous on D? Justify your answer.
- (h) (i) A real function f is continuous on [0, 2] and f(0) = f(2), then show that there exists at least a point $c \in [0, 1]$ such that f(c) = f(c+1).
 - (ii) Prove that there exists $\theta \in \left(0, \frac{\pi}{2}\right)$ such that $\theta = \cos \theta$.
- (i) Prove that the necessary and sufficient condition for a continuous function f on an open bounded interval (a, b) to be uniformly continuous on (a, b) is $\lim_{x \to a^+} f(x)$ and $\lim_{x \to b^-} f(x)$ both exist finitely.

Group - B

[Differentiability of Functions]

(Marks : 30)

3. Answer any four questions :

3×4

- (a) Let I be an interval. If a function $f: I \to \mathbb{R}$ be such that f'(x) exists and bounded on I, then prove that f is uniformly continuous on I.
- (b) Show that there does not exist a function φ such that $\varphi'(x) = f(x)$ on [0, 2], where f(x) = x [x].
- (c) Apply Lagrange's Mean Value Theorem to prove that $0 < \frac{1}{x} \ln \frac{e^x 1}{x} < 1$; $\forall x > 0$.
- (d) If f" is continuous on some neighbourhood of c then prove that

$$\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$$

- (e) Let $f: [-1, 1] \to \mathbb{R}$ be defined by $f(x) = 1 x^{4/5}$. Explain whether the equation f'(x) = 0 has any root in (-1, 1).
- (f) Prove or disprove: If a function f(x) has an extreme value at an interior point 'c' of its domain, then f'(c) = 0.

Or

Show that -2 is an extreme point but 2 is not an extreme point of the function f where $f'(x) = (x+2)^3(x-2)^2$; $x \in \mathbb{R}$.

4. Answer any three questions :

(a) State and prove Rolle's Theorem.

2+4

- (b) State Cauchy Mean Value Theorem. If f is differentiable on [0, 1], then show by Cauchy Mean Value Theorem that $f(1) f(0) = \frac{f'(x)}{2x}$ has at least one solution in (0, 1).
- (c) (i) $\varphi(x) = f(x) + f(1-x)$ and f''(x) < 0 $x \in [0, 1]$. Prove that φ is increasing in $\left[0, \frac{1}{2}\right]$ and decreasing in $\left[\frac{1}{2}, 1\right]$.
 - (ii) Show that if two functions have equal derivative at every point of (a, b) then they differ only by a constant.
- (d) Expand log(1+x) in a finite series in power of x with Lagrange's form of remainder upto degree four.
- (e) Find the maximum volume of a cylinder that can be inscribed in a sphere of radius $5\sqrt{3}$ cm.

6